piwik-script

Intern
    International Symposium organized by the Students of the Graduate School of Life Sciences
      

    Dr. Jonathan Thon

    Harvard Medical School, USA 

    Research: We are making functional platelets for human infusion. Platelets are essential for hemostasis, and platelet transfusionsare widely used to treat patients with inherited or acquired thrombocytopenia. Consequently, the limited availability of donor platelets owing to their 5-day shelf life, immunogenicity of platelet products, and risk of sepsis due to bacterial contamination are of serious clinical concern. New strategies for generating platelets in vitro from non-donor dependent sources are necessary to obviate these risks and meet transfusion needs. My Research Goals are to develop a bio-mimetic system to study the cell biological and molecular pathways involved in platelet production, and produce useable numbers of clinically viable human platelets for infusion.

     

    Dr. Mariano Barbacid

    El Centro Nacional de Investigaciones Oncológicas (CNIO), Spain

    Research: His work led in 1982 to the isolation of the first human oncogene and the first mutation associated with the development of human cancer. These findings, also made independently by two other groups, have been seminal to establish the molecular bases of human cancer.
    During the following decade, he joined Bristol-Myers Squibb where he became Vice President of Oncology Drug Discovery. In 1998, he returned to Spain to build and direct the Spanish National Cancer Research Center (CNIO). In 2011, he stepped down as director to concentrate on his own research on the identification and functional validation of therapeutic strategies to treat K-Ras/TP53 driven lung and pancreatic tumors.

     

     

     

    Prof. Ludmilla Morozova-Roche

    Umeå University, Sweden

    Research: Prof. Ludmilla Morozova-Roche is a Professor of Medical Biophysics at the Umeå University in Sweden. Her work focuses on the role of inflammation and amyloid formation in neurodegeneration diseases including Alzheimer’s, Parkinson’s diseases and traumatic brain injury. In particular, her research addresses early events in fibrillation process and the molecular and cellular mechanisms of amyloid toxicity.

     

    Prof. Robert Goldman

    Feinberg School of Medicine, Northwestern University Chicago, USA

    Research: We study the structure, function and dynamic properties of intermediate filaments in essential mammalian cell biological phenomena. Our work focuses on the role of cytoskeletal intermediate filaments in regulating cell shape, mechanics, signal transduction, adhesion, cell motility and molecular cross talk with microtubules and microfilaments. We are also determining the roles of the nuclear lamins in regulating nuclear architecture and chromatin organization.

       

    Prof. Anna Smed Sörensen

    Karolinska Institute Solna, Sweden 

    Research: With every breath we expose our lungs to foreign material that our immune system needs to tolerize or fight. Therefore it may not be surprising that acute respiratory infections caused by inhaled viruses such as Influenza or Hanta viruses are the most frequent reason for medical consultations in the world. Infection or inflammation is often restricted to a particular site in the body and Dendritic Cells are different depending on their anatomical distribution. Therefore, an important originality of our work is that we study immune cells of the respiratory system, the site of infection and inflammation. We work in close collaboration with physicians to collect endobronchial biopsies and bronchoalveolar lavage fluid and cells following bronchoscopy, as well as blood, and apply a range of sophisticated immunological and cell biological methods to understand the detailed function of DCs. If we can correlate the phenotype and function of DCs, the immune cells that present antigen to T cells, to clinical parameters, this project could aid in the identification of novel biomarkers, as well as prepare ground for new treatments for pulmonary conditions.

      

    Dr. Andreas Diepold

    Max Planck Institute for Terrestrial Microbiology Marburg,  Germany

    Research: Bacteria that live in contact to eukaryotic cells greatly benefit from being able to manipulate host cell behaviour. One of the most direct and elegant ways to reach this aim is the type III secretion system (T3SS), a molecular syringe also known as “injectisome”, used by gram-negative bacteria to inject effector proteins into host cells. The T3SS is essential for virulence in many important human pathogens, including Salmonella, Shigella, and pathogenic Escherichia coli, that cause several millions of deaths per year. My group wants to understand how the T3SS works on the molecular level, how it is activated and regulated during the infection process, and how we can control or inhibit its function. To this aim, we analyze the T3SS in live bacteria. We recently found that the T3SS is a dynamic molecular machine, which can quickly adapt its assembly and function to external cues. We now aim to find out how bacteria use protein dynamics for secretion, and how this increases their chance of survival during infection.

      

    Prof. Guillermo Leon Montoya Pelaez

    Universidad Icesi, Cali, Colombia 

    Research: Dr. Guillermo Montoya has extensive expertise in natural products chemistry; he is a Pharmaceutical Chemist with a Ph.D. in Chemical Sciences. He had the opportunity to training in mass spectrometry coupled to liquid chromatography in Würzburg University (Germany) under the guidance of Dr. Prof. Ulrike Holzgrabe. He studied glycosylated pentacyclic triterpenes and fragmentation reactions under soft ionization techniques. GM is the research group leader at natural products branch at the Icesi University (IU). The main goal of the branch is to establish new modern tools to discover natural molecules from renewable sources and exploring Andean native biodiversity. He is also interested to discover molecules from agricultural residues to use them as a raw material in new bioproducts. He has been working at IU for 7 years, having positions as Assistant Professor and Researcher in Phytochemistry, Chairman of Pharmacy Program during two years, and currently he is the Head of Pharmaceutical Sciences Department. GM has been the PI of several internal and national grants related to the development of new tools and methodologies to identify wasted organic molecules and promoting its recovery.

    Within the framework of his work, he successfully established a research collaboration with the institute of medicinal chemistry of Würzburg University. He actively promotes the bilateral academic exchange of students between Germany and Colombia.

     

     

     

     

      

    Prof. Dr. Philip Kollmannsberger

    CCTB University of Würzburg, Germany

    Research: We develop and apply computational methods for automated image and network analysis, aiming towards a quantitative understanding of multicellular interactions in neuronal and other tissues. Our approach includes for example segmentation of synaptic structures from electron microscopic images using deep learning, clustering of neuronal proteins from 3D superresolution microscopy, and the analysis of network structure and dynamics both in vitro in 3D tissue culture as well as in vivo. Based on the quantitative information from such large-scale image data, we develop theoretical models and generate new hypotheses on the structure and function of complex biological networks on all scales

     

     

     

     

     

     

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Facebook weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Twitter weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Kontakt

    Universität Würzburg
    Sanderring 2
    97070 Würzburg

    Tel.: +49 931 31-0
    Fax: +49 931 31-82600

    Suche Ansprechpartner

    Sanderring Röntgenring Hubland Nord Hubland Süd Campus Medizin